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CER;“ CERN openlab
aQ CERN openlab is the only large-

scale structure at CERN for
developing industrial R&D
partnerships

" www.cern.ch/openlab-about

a Divided in competence centers

e (i“tel,a " HP: wireless networking
CERN " |ntel: advanced hardware and

openlab | pacLe §oftwar§ evaluations and
www.cern.ch/openlab Integratlons

" Oracle: database and storage

" Siemens: automating control
systems

PARTNERS

SIEMENS
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Qa Part of our activity is to develop new benchmarks
that are representative of the computing applications
used at CERN

® Simulation, reconstruction, data analysis

" Collaboration with the physics community

" We use these applications for evaluating the performance
of new Intel platforms, working closing with Intel experts

A In this and in next presentation we will present what
we are doing for data analysis applications

" Biased from my experience in the Babar and Atlas
experiments. However, data analysis is not our goal, so

we don’t focus on any specific analysis

® Strong collaboration with physics collaborators to have wide
coverage of different analyses
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a Our way to proceed:
" Understanding the current version of the algorithm

" Rewriting the algorithm so that we can improve it
® Optimizations, vectorization, numerical accuracy

" Apply parallelization
" Porting the algorithm on accelerators

2 We will focus on the problem we have encountered and
on the solutions we have adopted, rather than showing
results

® Most technical details, useful in the context of a workshop

" |n my presentation | will introduce the application and the
parallelization on the CPU, while in the next presentation Yngve will
show the porting to the GPU
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Ty Data analysis

openlab

a Huge quantity of data collected, but most of events
are due to well-know physics processes

" New physics effects expected in a tiny fraction of the total
events: few tens

A Crucial to have a good discrimination between

interesting (signal) events and the rest (background)
® Data analysis techniques play a crucial role in this “war”
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Likelihood-based techniques

a Data are a collection of independent events
" an event consists of the measurement of a set of variables
(energies, masses, spatial and angular variables...) recorded in a
brief span of time by the physics detectors

3 Introducing the concept of probability P (= Probability
Density Function, PDF) for a given event to be signal or
background, we can combine this information for all
events in the likelihood function

N
L = H P(a%z ‘6)) N number of events
1=1

@ set of variables for the event 2
0 set of parameters

Q Several data analysis techniques requires the evaluation
of £ to discriminate signal versus background events
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3 It allows to estimate free parameters over a data sample,
by minimizing the corresponding Negative Log-Likelihood
(NLL) function (extended likelihood)

N

NLL =Y "n; =3 [ nyP;(2:16,)
=1 i=1 j=1

s species, 1.€. signals and backgrounds
n,; number of events belonging to the species j

Q The procedure of minimization can require several

evaluation of the NLL
" Depending on the complexity of the function, the number of
observables, the number of free parameters, and the number of
events, the entire procedure can require long execution time
" Mandatory to speed-up the execution
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Examples

3 In most cases PDFs can be factorized as product of the n
PDFs of each variable (i.e. case of uncorrelated variables)

0.025—

0.021

Gaussian .

G(z|p,0) =

0.005-
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3 In most cases PDFs can be factorized as product of the n
PDFs of each variable (i.e. case of uncorrelated variables)

Pi(&:l0;) = || Py («?10;)
v=1

Combined Atlas & CMS Higgs analysis:
12 variables
50 free parameters
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o RooFit is commonly used in High Energy Physics
experiments to define the likelihood functions (W. Verkerke
and D. Kirkby)

a Details at http://root.cern.ch/drupal/content/roofit
o Mathematical concepts are represented as C++ objects

Mathematical concept I RooFit class Gaus(x m S)

variable X RooRealVar
I oGaussi

function f (x ) I RooAbsReal

PDF f (x ) RooAbsPdf

space pomt x : RooArgSet

ntegral X )dx RooRealIntegral

frizes ff( )d I RooRealVar x(“x”,”x"”,2,-10,10)

Xmin RooRealVar s(“s”,”s”,3) ;

list of space points RooAbsData RooRealVar m(“m”,”m”,0) ;

RooGaussian g(“g”,”g”,x,m,s)

o On top of RooFit developed another package for advanced
data analysis techniques, RooStats

o Limits and intervals on Higgs mass and New Physics effects

Alfio Lazzaro (alfio.lazzaro@cern.ch) 10
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o Numerical minimization of the NLL using MINUIT (F. James,
Minuit, Function Minimization and Error Analysis, CERN long
write-up D506, 1970)
o MINUIT uses the gradient of the function to find local minimum
(MIGRAD), requiring
o The calculation of the gradient of the function for each free parameter,
naively

2 function calls

ONLL | | NLL(h + Ei)]—[NLL(éO _ Q)| [

00 |;, 2d
o The calculation of the covariance matrix of the free parameters, i.e.
evaluation of the second order derivatives
o The minimization is done in several steps moving in the
Newton direction: each step requires the calculation of the

gradient
> Several calls to the NLL

Alfio Lazzaro (alfio.lazzaro@cern.ch) 11
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a We developed a new algorithm for the likelihood function
evaluation to be added in RooFit
" We don’t replace the current RooFit algorithm, which is used for
results checking
" Very chaotic situation: users can implement any kind of model
" No need to change the user code to use the new implementation,
l.e. same interface (use a simple flag to switch to the new
algorithm)
Q The new algorithm is optimized to run on the CPU
® Used as reference for the GPU implementation: “fair” comparison
a All data in the calculation are in double precision floating
point numbers
a Our target is to use commodity systems (e.g. laptops or

desktops), easily accessible to data analysts
" Of course we tests also on server systems

Alfio Lazzaro (alfio.lazzaro@cern.ch) 12
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1. Read the values of the variables for each event

2. Make the calculation of PDFs for each event

o Each PDF has a common interface declared inside the class RooAbsPdf
with a virtual method which defines the function

0 Automatic calculation of the normalization integrals for each PDF
o Calculation of composite PDFs: sums, products, extendend PDFs

3. Loop on all events and make the calculation of the NLL

" Asingle loop for all events Variables »
var, | var, var,
Parallel execution «g P R
over the events 71 71
(by fork), with final w2 0
reduction of the i 5 5 :_________ :
contributions N
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CErn Likelihood Function evaluation in RooFit (2)
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Ex: P ="Pj(a,) Pg(b,) NLL =0

a; | by

a, | b,
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Ex: P ="Pj(a,) Pg(b,)

Likelihood Function evaluation in RooFit (2)

a, | by |0 Pa(@r) | Petby) [0 Patan)Palby) [0 [ VEL—=1n Paa)Pa(by)

a, | b,
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Ex: P ="Pj(a,) Pg(b,)

Likelihood Function evaluation in RooFit (2)

a; | by

2, | b, |0 Pa(an) [ Patoy) D] Pa(ay)Paby) [E0 [ NEL—=In [Py, Pe(b)]
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CErn Likelihood Function evaluation in RooFit (3)
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Looping over all events and do the accumulation on NLL
" Data are stored in something like ROOT TTree (RooTreeDataStore)
* Very inefficient. At then our variables are simple float/double/int values

®* |t breaks any possible vectorization
®* No thread safe, parallelization done with a fork, i.e. no shared memory

" |nthe C++ OO0 spirit, there is a common interface (RooAbsReal)

and then virtual methods in all derivate classes
® Each PDF calls virtual methods to access parameters, the observables, the

integral value for the normalization, calculation of the In’s, ...
®* |n case of composite PDFs (e.g. sums, products) it requires the call to virtual

method of corresponding PDFs
® Alot of virtual function calls!

" |f the PDF doesn’t change in the minimization, they are
precalculated for all events and stored as a standard variable in
the dataset

®* Not efficient way for caching the values of the PDFs
®* [t doesn’t take in account caching of constant values of the PDF inside a

single minimization iteration

Alfio Lazzaro (alfio.lazzaro@cern.ch) 17
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" PDFs are considered as independent entities, i.e. a PDFs
doesn’t know if it is called inside a minimization process,
from a mother composite PDF, or with a direct call
® A PDF is not responsible to read the corresponding data

* The PDF provides a single result for a given values of the data
and parameters

* |n case of calculation which gives errors (e.g. negative

probability), we get a warning message for the given values of the
data and parameters

" Parallelization with a fork increases the memory footprint

with the number of threads, but data are read-only!
e Still it is easy to implement and it gives good scalability

" At the end, we are doing the evaluation of functions

(PDFs) over a vector of read-only data!
® Suitable for loop parallelism (note functions can be very complex!)

Alfio Lazzaro (alfio.lazzaro@cern.ch) 18
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1. Read all events and store in arrays in memory

2. For each PDF make the calculation on all events
a Corresponding array of results is produced for each PDF
O Evaluation of the function inside the local PDF

3. Combine the arrays of results (composite PDFs)
4. Loop over the final array of results to calculate NLL (final reduction)

Ex: P ="Px(a;) Pg(b)

Alfio Lazzaro (alfio.lazzaro@cern.ch) 19
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CERN New algorithm and parallelization (1)

openlab

1. Read all events and store in arrays in memory

2. For each PDF make the calculation on all events
a Corresponding array of results is produced for each PDF
O Evaluation of the function inside the local PDF

3. Combine the arrays of results (composite PDFs)
4. Loop over the final array of results to calculate NLL (final reduction)

Ex: P ="Px(a;) Pg(b)

I v
a4 b, Pa(ay)
a,| | b, E> Pa(a,)
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CERN New algorithm and parallelization (1)

openlab

1. Read all events and store in arrays in memory

2. For each PDF make the calculation on all events
a Corresponding array of results is produced for each PDF
O Evaluation of the function inside the local PDF

3. Combine the arrays of results (composite PDFs)
4. Loop over the final array of results to calculate NLL (final reduction)

Ex: P ="Px(a;) Pg(b)

| v
a4 b, |:> Pa(ay)| | Ps(by)
3, | | by Pa(a,) | | Pg(by)

Alfio Lazzaro (alfio.lazzaro@cern.ch) 21



\ »

CERN New algorithm and parallelization (1)

openlab

1. Read all events and store in arrays in memory

2. For each PDF make the calculation on all events
a Corresponding array of results is produced for each PDF
O Evaluation of the function inside the local PDF

3. Combine the arrays of results (composite PDFs)
4. Loop over the final array of results to calculate NLL (final reduction)

Ex: P ="Px(a;) Pg(b)

a4 b, E> Pa(ay)| | Ps(by) E> Pa(a4)Pg (by)
3, | | by Pa(as) | | Ps(by) Pa(a,)Pg (by)
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1. Read all events and store in arrays in memory

2. For each PDF make the calculation on all events
a Corresponding array of results is produced for each PDF
O Evaluation of the function inside the local PDF

3. Combine the arrays of results (composite PDFs)
4. Loop over the final array of results to calculate NLL (final reduction)

Ex: P ="Px(a;) Pg(b)

a4 b, E> Pa(ay)| | Ps(by) E> Pa(a4)Pg (by) E> In [Pa(a4) Pg (by)]

3, | | by Pa(as) | | Ps(by) Pa(a,)Pg (by) In [Pa(a,) Pg (by)]
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CERN New algorithm and parallelization (1)

openlab

1. Read all events and store in arrays in memory

2. For each PDF make the calculation on all events
a Corresponding array of results is produced for each PDF
O Evaluation of the function inside the local PDF

3. Combine the arrays of results (composite PDFs)
4. Loop over the final array of results to calculate NLL (final reduction)

Ex: P ="Px(a;) Pg(b)

a4 b, E> Pa(ay)| | Ps(by) E> Pa(a4)Pg (by) E> In [Pa(a4) Pg (by)]

3, | | by Pa(as) | | Ps(by) Pa(a,)Pg (by) In [Pa(a,) Pg (by)]

9

Final reduction in NLL

Alfio Lazzaro (alfio.lazzaro@cern.ch) 24
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* Parallelization splitting calculation of each PDF over the events
(data parallelism) and over the independent PDFs (task parallelism)
* Data are organized in vector, which are shared in memory
* Perfect for vectorization
* Call the PDFs once for all events
* Reduce dramatically the number of virtual function calls!
* Perfect for caching values over the iterations during the minimization

* Drawbacks
* Require to handle arrays of temporary results: | value per each event

and PDF
* Memory footprint increases with the number of events and number

of PDFs, but not with the number of threads!
* Due to the vectorization, we cannot have warning messages for a
given event, but only at the end of the loop for the calculation over

all events

Alfio Lazzaro (alfio.lazzaro@cern.ch) 25
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Implementation in RooFit

Q First of all we added a new class to manage the data as
vectors (based on map of std::vector’s, where the key is
the name of the observable)

3 We added a class to take in account the array of results
(based on std::vector)

Q The loop parallelism is implemented using OpenMP
" An OpenMP pragma loop for each loop used in the evaluation of the
function

d Added new methods to the PDF interface

" Still the old interface is working
a Using Intel compiler for the auto-vectorization of the loops

(using svml library by Intel)
" GNU compiler cannot auto-vectorize complex functions (like exp’s),

unless you use intrinsics...

Alfio Lazzaro (alfio.lazzaro@cern.ch) 26
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’ // Inline method for the Gaussian PDF calculation, OpenM P pa rallellzatlon
CERN // defined inside the class RooGaussian

openlab inline double evaluatelLocal (const double x,
const double mu,
const double sigma) const

{
return std::exp(-0.5xstd::pow ((x-mu)/sigma, 2));

}

| b o O Very easy parallelization with
// Virtual method for the calculation of the

// Gaussian PDF on a single event O
// (this is the original RooFit algorithm) PenMP

virtual double evaluate() const

( Od Take benefit from the code

return evaluatelocal (x,mu, sigma);
} L] L] L]
optlmlzatlons

// Virtual method for the calculation of the D Inln‘"ng of the funct|ons no
// Gaussian PDF on all events ’
// (new implemented algorithm) H 1
virtual bool evaluate (const RooAbsData& data) VIrtuaI funCtlons
{ 3 .
// retrive the data array of values for the variable D Data Organlzed In C arra)'s’

const double xdataArray = data.GetDataArray(x.arg());

// check if there is an array for the variable pel’feCt fOI‘ VeCtorlzatlon
if (dataArray==0)

return false; QO Easily avoid race conditions,

int nEvents ~ data.GetEntries )7 keep the parallel region

// retrive the array for the partial results . . . .
double *resultsArray = GetResultsArray(); ||m|ted |nS|de each PDF
double m_mu = mu;

double m_sigma = sigma;

— // loop over the events to calculate the Gaussian
#pragma omp parallel for
for (int idx = 0; idx<nEvents; ++idx) {
resultsArray[idx] = evaluateLocal (dataArray[idx],
m_mu,m_sigma);
}

return true;
}

Alfio Lazzaro (alfio.lazzaro@cern.ch) 27
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A The final reduction for the NLL evaluation done in parallel using
block-wise algorithm
" Numerical approximation w.r.t. sequential reduction, which are
number of threads dependent

" Minuit is very sensitive to these approximation

® Of course differences are negligible, but still they can worry people (and they
can be non deterministic)

aQ We implemented a parallel reduction based on double-double
algorithm which reduces the approximations (Y. He and C. H. Q.
Ding, The Journal of Supercomputing, 18, 259-277, 2001; P.
Kornerup at al., IEEE Transactions on Computers, 01 Feb. 2011)

" We need to switch off any compiler optimization inside the
reduction, using pragmas

0 Now the results are identical up to 10 no matter how many

threads you are running

Alfio Lazzaro (alfio.lazzaro@cern.ch) 28
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SPE!.‘...!.}! Complex Model Test
Ngq [fl,aGl,a(z) + (1 T fl,a)GZ,a(m)]AGl,a(y)AGQ,a(Z) T
anl,b(az)BWl b(y)GQ,b(z) T
Model from B. Aubert et. al.,
Phys. Rev. Lett. 98,031801,2007 n.AR; c(fl?)Pl c(y)PQ,c(Z) T
naP1 qa(z)G1 a(y)AG1 q4(2)

17 PDFs in total, 3 variables, 4 components, 35 parameters
= G: Gaussian
= AG: Asymmetric Gaussian
= BW: Breit-Wigner
= AR: Argus function
= P: Polynomial

40% of the
execution time
is spent in exp’s

calculation

Note: all PDFs have analytical normalization integral, i.e. >98%
of the sequential portion can be parallelized

Alfio Lazzaro (alfio.lazzaro@cern.ch) 29
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a Dual socket Intel Westmere-based system: CPU (L5640) @
2.27GHz (12 physical cores, 24 hardware threads in total),

10x4096MB DDR3 memory @ 1333MHz
Q Linux 64bit, Intel C++ compiler version 12.0.2

# Events 10,000 25,000 50,000 100,000

RooF'it
# NLL evaluations 15810 14540 19041 12834
Time (s) 826.0 1889.0 51929 6778.9

Time per NLL evaluation (ms)  52.25  129.92 272.72 528.19 Vectorization

OpenMP (w/o vectorization)

4 NLL evaluations 15237 17671 15761 11396 gives a |.8x
Time (s) 3151  916.0 1642.6 2397.3 speed-u
Time per NLL evaluation (ms)  20.68 51.84  104.22 210.36 P P
w.r.t. RooFit 25x  25x  2.6x 2.5 —— (SSE).
OpenMP (w/ vectorization) Additional
# NLL evaluations 15304 17163 15331 12665 o -
Time (s) 1788 4921 9242  1536.9 12% using
4.5x faster!  Time per NLL evaluation (ms) 11.68  28.67 6028 121.35 AVX on Intel
- w.r.t. RooFit 45x  45x  4dx 44X e .
Sandy Bridge

30
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Q Dual socket Intel Westmere-based system: CPU @ 2.67GHz (12
physical cores, 24 hardware threads in total), Turbo Mode ON,
10x4096MB DDR3 memory @ 1333MHz

Linux 64bit, Intel C++ compiler version 12.0.2

U O

100,000 events
Data is shared, i.e. no
significant increase in the

memory footprint

" Possibility to use Hyper-threading
(about 20% improvement)

Limited by the sequential part,

OpenMP overhead, and
memory access to data

Processing Time (s)

Test on CPU in parallel

350.00 --Time - 14.50
-#-Speed-up

—Ide ISp ed-up|

300.00 " 12.50

10.50

850 2

'c':

ﬂJ

\\ / L 6.50 g
4.50

50.00 2.50

250.00

200.00

150.00 -

100.00

0.00 - = 0.50
0 2 4 6 8 10 12 14 16 18 20 22 24

# Threads
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Improvements

« Scalability is limited by accessing the array of results
 In particular the effect becomes important for PDFs with simple
function, like polynomials and composite PDFs (add and prod)
« We do pinning of the threads to the physical cores, taking in
account the NUMA effect
 However the performance depends on the cache memory
available on the systems
« Testing on a 4 core i7 desktop system (8 MB L3 cache) we
reach a factor ~2x with 8 threads (using SMT)
« We solve this problem with different techniques
« Merge the number of OpenMP parallel region and reuse the data
(in particular for composite PDFs)
* Do block-splitting, i.e. do full evaluation for small sub-groups of
events
* Doing this optimization we are able to reach 4.6x on the 4 core i/
desktop system (8 threads with SMT)

Alfio Lazzaro (alfio.lazzaro@cern.ch) 32
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Conclusion (1)

* Implementation of the algorithm in OpenMP required not so
drastic changes in the existing RooFit code
* |n any case we added our implementation, so that users
can use the original implementation for reference
* Optimization gives a great speed-up: ~5x
- Note that our target is running at the user-level of small
systems (laptops, desktops), i.e. with small number of
CPU cores
- Very important to take under control numerical accuracy
- We would like to try single precision in case of PDF
evaluation, moving to double precision for the final
reduction
- Reduce memory footprint (half space for results)
.- Gain a factor possible 2x from vectorization

Alfio Lazzaro (alfio.lazzaro@cern.ch) 33
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Conclusion (2)

* Try the code on LHC analyses
* Dalitz analysis
* Working with RooStats authors

* We are also evaluating Intel MIC platform, which looks very
promising as accelerator system (very easy to use it)
* X806 instruction set accelerator
* 512-bit SIMD units
* More than >50 cores

* There will a workshop at CERN discussing “Future Challenges in
Tracking and Trigger Concepts™: http://indico.cern.ch/event/
tracking2011

Alfio Lazzaro (alfio.lazzaro@cern.ch) 34



