Implementing
parallel
algorithms for
data analysis In
ROOT/RooFit openlab

Sverre Jarp, Alfio Lazzaro, Julien Leduc,

Yngve Sneen Lindal, Andrzej Nowak
European Organization for Nuclear Research (CERN), Geneva, Switzerland

Workshop on Future Computing in Particle Physics, e-Science Institute,
Edinburgh (UK)
June 151-17t 2011

\\p

CER;“ CERN openlab
aQ CERN openlab is the only large-

scale structure at CERN for
developing industrial R&D
partnerships

" www.cern.ch/openlab-about

a Divided in competence centers

e (i“tel,a " HP: wireless networking
CERN " |ntel: advanced hardware and

openlab | pacLe §oftwar§ evaluations and
www.cern.ch/openlab Integratlons

" Oracle: database and storage

" Siemens: automating control
systems

PARTNERS

SIEMENS

Alfio Lazzaro (alfio.lazzaro@cern.ch) 2

\ »

‘e
CERN
openlab

Qa Part of our activity is to develop new benchmarks
that are representative of the computing applications
used at CERN

® Simulation, reconstruction, data analysis

" Collaboration with the physics community

" We use these applications for evaluating the performance
of new Intel platforms, working closing with Intel experts

A In this and in next presentation we will present what
we are doing for data analysis applications

" Biased from my experience in the Babar and Atlas
experiments. However, data analysis is not our goal, so

we don’t focus on any specific analysis

® Strong collaboration with physics collaborators to have wide
coverage of different analyses

Alfio Lazzaro (alfio.lazzaro@cern.ch) 3

Introduction (1)

\ »

CERN Introduction (2)

openlab

a Our way to proceed:
" Understanding the current version of the algorithm

" Rewriting the algorithm so that we can improve it
® Optimizations, vectorization, numerical accuracy

" Apply parallelization
" Porting the algorithm on accelerators

2 We will focus on the problem we have encountered and
on the solutions we have adopted, rather than showing
results

® Most technical details, useful in the context of a workshop

" |n my presentation | will introduce the application and the
parallelization on the CPU, while in the next presentation Yngve will
show the porting to the GPU

Alfio Lazzaro (alfio.lazzaro@cern.ch) 4

\ »
.\\'-

Ty Data analysis

openlab

a Huge quantity of data collected, but most of events
are due to well-know physics processes

" New physics effects expected in a tiny fraction of the total
events: few tens

A Crucial to have a good discrimination between

interesting (signal) events and the rest (background)
® Data analysis techniques play a crucial role in this “war”

AT LA S [:
12 EXPERIMENT K¢} [ATLAS Preliminary —4— 5010 and 2011 Data |
u\,,: 100 J- Ldt=131 pb'1 jj © vj theory error —
‘g N ® yy theory error
. D 80 —— DY expected i
‘ -=-=== +jj expected]
- 60 — = + Y] expected S|
. r — 4+ 7Y expected .
40f-
20—

| " b - L W Y . | PO P
100 105 110 115 120 125 130 135 140 145 150
M,, [GeV]

Alfio Lazzaro (alfio.lazzaro@cern.ch) 5

\ »

‘e
CERN

openlab

Likelihood-based techniques

a Data are a collection of independent events
" an event consists of the measurement of a set of variables
(energies, masses, spatial and angular variables...) recorded in a
brief span of time by the physics detectors

3 Introducing the concept of probability P (= Probability
Density Function, PDF) for a given event to be signal or
background, we can combine this information for all
events in the likelihood function

N
L = H P(a%z ‘6)) N number of events
1=1

@ set of variables for the event 2
0 set of parameters

Q Several data analysis techniques requires the evaluation
of £ to discriminate signal versus background events

Alfio Lazzaro (alfio.lazzaro@cern.ch) 6

\ »

CErT Maximum Likelihood Fits

openlab

3 It allows to estimate free parameters over a data sample,
by minimizing the corresponding Negative Log-Likelihood
(NLL) function (extended likelihood)

N

NLL =Y "n; =3 [nyP;(2:16,)
=1 i=1 j=1

s species, 1.€. signals and backgrounds
n,; number of events belonging to the species j

Q The procedure of minimization can require several

evaluation of the NLL
" Depending on the complexity of the function, the number of
observables, the number of free parameters, and the number of
events, the entire procedure can require long execution time
" Mandatory to speed-up the execution

Alfio Lazzaro (alfio.lazzaro@cern.ch) 7

\ »
.\\'-

‘e
CERN

openlab

Examples

3 In most cases PDFs can be factorized as product of the n
PDFs of each variable (i.e. case of uncorrelated variables)

0.025—

0.021

Gaussian .

G(z|p,0) =

0.005-

Alfio Lazzaro (alfio.lazzaro@cern.ch) 8

LOCCC O

\»
.. C

e Examples

openlab

3 In most cases PDFs can be factorized as product of the n
PDFs of each variable (i.e. case of uncorrelated variables)

Pi(&:l0;) = || Py («?10;)
v=1

Combined Atlas & CMS Higgs analysis:
12 variables
50 free parameters

— A
S ~
. '\ ('(jr ' oY
’}’r’ . w l. ol -— :; Ti >y " w ’/' P ‘J e
R —» 1 — 777:7“?F '\ »*fiit\\ ﬁ?y /(" fﬁ ‘/H 771N NN S W “m}?‘ ;
= W e | S S N | B o
INRREER i Wm' WW’)”ﬂ’f'/lfﬁ'twt’(Mﬂ”ﬁ“ﬂ\m\mmﬁmm”” WWMM’WC’W(WM)‘MM('//’

i QMWWWWW O

— | -

—

Alfio Lazzaro (alfio.lazzaro@cern.ch) 9

\»
.\ C

= Building models: RooFit

CERN

openlab

o RooFit is commonly used in High Energy Physics
experiments to define the likelihood functions (W. Verkerke
and D. Kirkby)

a Details at http://root.cern.ch/drupal/content/roofit
o Mathematical concepts are represented as C++ objects

Mathematical concept I RooFit class Gaus(x m S)

variable X RooRealVar
I oGaussi

function f (x) I RooAbsReal

PDF f (x) RooAbsPdf

space pomt x : RooArgSet

ntegral X)dx RooRealIntegral

frizes ff()d I RooRealVar x(“x”,”x"”,2,-10,10)

Xmin RooRealVar s(“s”,”s”,3) ;

list of space points RooAbsData RooRealVar m(“m”,”m”,0) ;

RooGaussian g(“g”,”g”,x,m,s)

o On top of RooFit developed another package for advanced
data analysis techniques, RooStats

o Limits and intervals on Higgs mass and New Physics effects

Alfio Lazzaro (alfio.lazzaro@cern.ch) 10

\ »

CER’N MINUIT
o Numerical minimization of the NLL using MINUIT (F. James,
Minuit, Function Minimization and Error Analysis, CERN long
write-up D506, 1970)
o MINUIT uses the gradient of the function to find local minimum
(MIGRAD), requiring
o The calculation of the gradient of the function for each free parameter,
naively

2 function calls

ONLL | | NLL(h + Ei)]—[NLL(éO _ Q)| [

00 |;, 2d
o The calculation of the covariance matrix of the free parameters, i.e.
evaluation of the second order derivatives
o The minimization is done in several steps moving in the
Newton direction: each step requires the calculation of the

gradient
> Several calls to the NLL

Alfio Lazzaro (alfio.lazzaro@cern.ch) 11

parameter

\ »

‘e
CERN

openlab

a We developed a new algorithm for the likelihood function
evaluation to be added in RooFit
" We don’t replace the current RooFit algorithm, which is used for
results checking
" Very chaotic situation: users can implement any kind of model
" No need to change the user code to use the new implementation,
l.e. same interface (use a simple flag to switch to the new
algorithm)
Q The new algorithm is optimized to run on the CPU
® Used as reference for the GPU implementation: “fair” comparison
a All data in the calculation are in double precision floating
point numbers
a Our target is to use commodity systems (e.g. laptops or

desktops), easily accessible to data analysts
" Of course we tests also on server systems

Alfio Lazzaro (alfio.lazzaro@cern.ch) 12

Caveats

“ -y Likelihood Function evaluation in RooFit (1)
CERN

openlab

1. Read the values of the variables for each event

2. Make the calculation of PDFs for each event

o Each PDF has a common interface declared inside the class RooAbsPdf
with a virtual method which defines the function

0 Automatic calculation of the normalization integrals for each PDF
o Calculation of composite PDFs: sums, products, extendend PDFs

3. Loop on all events and make the calculation of the NLL

" Asingle loop for all events Variables »
var, | var, var,
Parallel execution «g P R
over the events 71 71
(by fork), with final w2 0
reduction of the i 5 5 :_________ :
contributions N

Alfio Lazzaro (alfio.lazzaro@cern.ch) 13

CErn Likelihood Function evaluation in RooFit (2)

openlab

Ex: P ="Pj(a,) Pg(b,) NLL =0

a; | by

a, | b,

Alfio Lazzaro (alfio.lazzaro@cern.ch) 14

\ »

‘e
CERN

openlab

Ex: P ="Pj(a,) Pg(b,)

Likelihood Function evaluation in RooFit (2)

a, | by |0 Pa(@r) | Petby) [0 Patan)Palby) [0 [VEL—=1n Paa)Pa(by)

a, | b,

Alfio Lazzaro (alfio.lazzaro@cern.ch) 15

\ »

‘e
CERN

openlab

Ex: P ="Pj(a,) Pg(b,)

Likelihood Function evaluation in RooFit (2)

a; | by

2, | b, |0 Pa(an) [Patoy) D] Pa(ay)Paby) [E0 [NEL—=In [Py, Pe(b)]

Alfio Lazzaro (alfio.lazzaro@cern.ch) 16

CErn Likelihood Function evaluation in RooFit (3)

openlab

Looping over all events and do the accumulation on NLL
" Data are stored in something like ROOT TTree (RooTreeDataStore)
* Very inefficient. At then our variables are simple float/double/int values

®* |t breaks any possible vectorization
®* No thread safe, parallelization done with a fork, i.e. no shared memory

" |nthe C++ OO0 spirit, there is a common interface (RooAbsReal)

and then virtual methods in all derivate classes
® Each PDF calls virtual methods to access parameters, the observables, the

integral value for the normalization, calculation of the In’s, ...
®* |n case of composite PDFs (e.g. sums, products) it requires the call to virtual

method of corresponding PDFs
® Alot of virtual function calls!

" |f the PDF doesn’t change in the minimization, they are
precalculated for all events and stored as a standard variable in
the dataset

®* Not efficient way for caching the values of the PDFs
®* [t doesn’t take in account caching of constant values of the PDF inside a

single minimization iteration

Alfio Lazzaro (alfio.lazzaro@cern.ch) 17

CERN Likelihood Function evaluation in RooFit (4)

openlab

" PDFs are considered as independent entities, i.e. a PDFs
doesn’t know if it is called inside a minimization process,
from a mother composite PDF, or with a direct call
® A PDF is not responsible to read the corresponding data

* The PDF provides a single result for a given values of the data
and parameters

* |n case of calculation which gives errors (e.g. negative

probability), we get a warning message for the given values of the
data and parameters

" Parallelization with a fork increases the memory footprint

with the number of threads, but data are read-only!
e Still it is easy to implement and it gives good scalability

" At the end, we are doing the evaluation of functions

(PDFs) over a vector of read-only data!
® Suitable for loop parallelism (note functions can be very complex!)

Alfio Lazzaro (alfio.lazzaro@cern.ch) 18

\ »

CERN New algorithm and parallelization (1)

openlab

1. Read all events and store in arrays in memory

2. For each PDF make the calculation on all events
a Corresponding array of results is produced for each PDF
O Evaluation of the function inside the local PDF

3. Combine the arrays of results (composite PDFs)
4. Loop over the final array of results to calculate NLL (final reduction)

Ex: P ="Px(a;) Pg(b)

Alfio Lazzaro (alfio.lazzaro@cern.ch) 19

\ »

CERN New algorithm and parallelization (1)

openlab

1. Read all events and store in arrays in memory

2. For each PDF make the calculation on all events
a Corresponding array of results is produced for each PDF
O Evaluation of the function inside the local PDF

3. Combine the arrays of results (composite PDFs)
4. Loop over the final array of results to calculate NLL (final reduction)

Ex: P ="Px(a;) Pg(b)

I v
a4 b, Pa(ay)
a,| | b, E> Pa(a,)

Alfio Lazzaro (alfio.lazzaro@cern.ch) 20

\ »

CERN New algorithm and parallelization (1)

openlab

1. Read all events and store in arrays in memory

2. For each PDF make the calculation on all events
a Corresponding array of results is produced for each PDF
O Evaluation of the function inside the local PDF

3. Combine the arrays of results (composite PDFs)
4. Loop over the final array of results to calculate NLL (final reduction)

Ex: P ="Px(a;) Pg(b)

| v
a4 b, |:> Pa(ay)| | Ps(by)
3, | | by Pa(a,) | | Pg(by)

Alfio Lazzaro (alfio.lazzaro@cern.ch) 21

\ »

CERN New algorithm and parallelization (1)

openlab

1. Read all events and store in arrays in memory

2. For each PDF make the calculation on all events
a Corresponding array of results is produced for each PDF
O Evaluation of the function inside the local PDF

3. Combine the arrays of results (composite PDFs)
4. Loop over the final array of results to calculate NLL (final reduction)

Ex: P ="Px(a;) Pg(b)

a4 b, E> Pa(ay)| | Ps(by) E> Pa(a4)Pg (by)
3, | | by Pa(as) | | Ps(by) Pa(a,)Pg (by)

Alfio Lazzaro (alfio.lazzaro@cern.ch) 22

\ »
.\\'-

CERN New algorithm and parallelization (1)

openlab

1. Read all events and store in arrays in memory

2. For each PDF make the calculation on all events
a Corresponding array of results is produced for each PDF
O Evaluation of the function inside the local PDF

3. Combine the arrays of results (composite PDFs)
4. Loop over the final array of results to calculate NLL (final reduction)

Ex: P ="Px(a;) Pg(b)

a4 b, E> Pa(ay)| | Ps(by) E> Pa(a4)Pg (by) E> In [Pa(a4) Pg (by)]

3, | | by Pa(as) | | Ps(by) Pa(a,)Pg (by) In [Pa(a,) Pg (by)]

Alfio Lazzaro (alfio.lazzaro@cern.ch) 23

\ »
.\\'-

CERN New algorithm and parallelization (1)

openlab

1. Read all events and store in arrays in memory

2. For each PDF make the calculation on all events
a Corresponding array of results is produced for each PDF
O Evaluation of the function inside the local PDF

3. Combine the arrays of results (composite PDFs)
4. Loop over the final array of results to calculate NLL (final reduction)

Ex: P ="Px(a;) Pg(b)

a4 b, E> Pa(ay)| | Ps(by) E> Pa(a4)Pg (by) E> In [Pa(a4) Pg (by)]

3, | | by Pa(as) | | Ps(by) Pa(a,)Pg (by) In [Pa(a,) Pg (by)]

9

Final reduction in NLL

Alfio Lazzaro (alfio.lazzaro@cern.ch) 24

\ »

CERN New algorithm and parallelization (2)

openlab

* Parallelization splitting calculation of each PDF over the events
(data parallelism) and over the independent PDFs (task parallelism)
* Data are organized in vector, which are shared in memory
* Perfect for vectorization
* Call the PDFs once for all events
* Reduce dramatically the number of virtual function calls!
* Perfect for caching values over the iterations during the minimization

* Drawbacks
* Require to handle arrays of temporary results: | value per each event

and PDF
* Memory footprint increases with the number of events and number

of PDFs, but not with the number of threads!
* Due to the vectorization, we cannot have warning messages for a
given event, but only at the end of the loop for the calculation over

all events

Alfio Lazzaro (alfio.lazzaro@cern.ch) 25

\ »

‘e
CERN

openlab

Implementation in RooFit

Q First of all we added a new class to manage the data as
vectors (based on map of std::vector’s, where the key is
the name of the observable)

3 We added a class to take in account the array of results
(based on std::vector)

Q The loop parallelism is implemented using OpenMP
" An OpenMP pragma loop for each loop used in the evaluation of the
function

d Added new methods to the PDF interface

" Still the old interface is working
a Using Intel compiler for the auto-vectorization of the loops

(using svml library by Intel)
" GNU compiler cannot auto-vectorize complex functions (like exp’s),

unless you use intrinsics...

Alfio Lazzaro (alfio.lazzaro@cern.ch) 26

\ »
.. \ ']))
L 4
’ // Inline method for the Gaussian PDF calculation, OpenM P pa rallellzatlon
CERN // defined inside the class RooGaussian

openlab inline double evaluatelLocal (const double x,
const double mu,
const double sigma) const

{
return std::exp(-0.5xstd::pow ((x-mu)/sigma, 2));

}

| b o O Very easy parallelization with
// Virtual method for the calculation of the

// Gaussian PDF on a single event O
// (this is the original RooFit algorithm) PenMP

virtual double evaluate() const

(Od Take benefit from the code

return evaluatelocal (x,mu, sigma);
} L] L] L]
optlmlzatlons

// Virtual method for the calculation of the D Inln‘"ng of the funct|ons no
// Gaussian PDF on all events ’
// (new implemented algorithm) H 1
virtual bool evaluate (const RooAbsData& data) VIrtuaI funCtlons
{ 3 .
// retrive the data array of values for the variable D Data Organlzed In C arra)'s’

const double xdataArray = data.GetDataArray(x.arg());

// check if there is an array for the variable pel’feCt fOI‘ VeCtorlzatlon
if (dataArray==0)

return false; QO Easily avoid race conditions,

int nEvents ~ data.GetEntries)7 keep the parallel region

// retrive the array for the partial results
double *resultsArray = GetResultsArray(); ||m|ted |nS|de each PDF
double m_mu = mu;

double m_sigma = sigma;

— // loop over the events to calculate the Gaussian
#pragma omp parallel for
for (int idx = 0; idx<nEvents; ++idx) {
resultsArray[idx] = evaluateLocal (dataArray[idx],
m_mu,m_sigma);
}

return true;
}

Alfio Lazzaro (alfio.lazzaro@cern.ch) 27

\ »

CErn Parallel reduction

openlab

A The final reduction for the NLL evaluation done in parallel using
block-wise algorithm
" Numerical approximation w.r.t. sequential reduction, which are
number of threads dependent

" Minuit is very sensitive to these approximation

® Of course differences are negligible, but still they can worry people (and they
can be non deterministic)

aQ We implemented a parallel reduction based on double-double
algorithm which reduces the approximations (Y. He and C. H. Q.
Ding, The Journal of Supercomputing, 18, 259-277, 2001; P.
Kornerup at al., IEEE Transactions on Computers, 01 Feb. 2011)

" We need to switch off any compiler optimization inside the
reduction, using pragmas

0 Now the results are identical up to 10 no matter how many

threads you are running

Alfio Lazzaro (alfio.lazzaro@cern.ch) 28

\»

SPE!.‘...!.}! Complex Model Test
Ngq [fl,aGl,a(z) + (1 T fl,a)GZ,a(m)]AGl,a(y)AGQ,a(Z) T
anl,b(az)BWl b(y)GQ,b(z) T
Model from B. Aubert et. al.,
Phys. Rev. Lett. 98,031801,2007 n.AR; c(fl?)Pl c(y)PQ,c(Z) T
naP1 qa(z)G1 a(y)AG1 q4(2)

17 PDFs in total, 3 variables, 4 components, 35 parameters
= G: Gaussian
= AG: Asymmetric Gaussian
= BW: Breit-Wigner
= AR: Argus function
= P: Polynomial

40% of the
execution time
is spent in exp’s

calculation

Note: all PDFs have analytical normalization integral, i.e. >98%
of the sequential portion can be parallelized

Alfio Lazzaro (alfio.lazzaro@cern.ch) 29

\ »
.\\'-

e Test on CPU in sequential

openlab

a Dual socket Intel Westmere-based system: CPU (L5640) @
2.27GHz (12 physical cores, 24 hardware threads in total),

10x4096MB DDR3 memory @ 1333MHz
Q Linux 64bit, Intel C++ compiler version 12.0.2

Events 10,000 25,000 50,000 100,000

RooF'it
NLL evaluations 15810 14540 19041 12834
Time (s) 826.0 1889.0 51929 6778.9

Time per NLL evaluation (ms) 52.25 129.92 272.72 528.19 Vectorization

OpenMP (w/o vectorization)

4 NLL evaluations 15237 17671 15761 11396 gives a |.8x
Time (s) 3151 916.0 1642.6 2397.3 speed-u
Time per NLL evaluation (ms) 20.68 51.84 104.22 210.36 P P
w.r.t. RooFit 25x 25x 2.6x 2.5 —— (SSE).
OpenMP (w/ vectorization) Additional
NLL evaluations 15304 17163 15331 12665 o -
Time (s) 1788 4921 9242 1536.9 12% using
4.5x faster! Time per NLL evaluation (ms) 11.68 28.67 6028 121.35 AVX on Intel
- w.r.t. RooFit 45x 45x 4dx 44X e .
Sandy Bridge

30

\»
.. '-

CERN

openlab

Q Dual socket Intel Westmere-based system: CPU @ 2.67GHz (12
physical cores, 24 hardware threads in total), Turbo Mode ON,
10x4096MB DDR3 memory @ 1333MHz

Linux 64bit, Intel C++ compiler version 12.0.2

U O

100,000 events
Data is shared, i.e. no
significant increase in the

memory footprint

" Possibility to use Hyper-threading
(about 20% improvement)

Limited by the sequential part,

OpenMP overhead, and
memory access to data

Processing Time (s)

Test on CPU in parallel

350.00 --Time - 14.50
-#-Speed-up

—Ide ISp ed-up|

300.00 " 12.50

10.50

850 2

'c':

ﬂJ

\\ / L 6.50 g
4.50

50.00 2.50

250.00

200.00

150.00 -

100.00

0.00 - = 0.50
0 2 4 6 8 10 12 14 16 18 20 22 24

Threads

Alfio Lazzaro (alfio.lazzaro@cern.ch) 31

\ »

‘e
CERN

openlab

Improvements

« Scalability is limited by accessing the array of results
 In particular the effect becomes important for PDFs with simple
function, like polynomials and composite PDFs (add and prod)
« We do pinning of the threads to the physical cores, taking in
account the NUMA effect
 However the performance depends on the cache memory
available on the systems
« Testing on a 4 core i7 desktop system (8 MB L3 cache) we
reach a factor ~2x with 8 threads (using SMT)
« We solve this problem with different techniques
« Merge the number of OpenMP parallel region and reuse the data
(in particular for composite PDFs)
* Do block-splitting, i.e. do full evaluation for small sub-groups of
events
* Doing this optimization we are able to reach 4.6x on the 4 core i/
desktop system (8 threads with SMT)

Alfio Lazzaro (alfio.lazzaro@cern.ch) 32

\ »

‘e
CERN

openlab

Conclusion (1)

* Implementation of the algorithm in OpenMP required not so
drastic changes in the existing RooFit code
* |n any case we added our implementation, so that users
can use the original implementation for reference
* Optimization gives a great speed-up: ~5x
- Note that our target is running at the user-level of small
systems (laptops, desktops), i.e. with small number of
CPU cores
- Very important to take under control numerical accuracy
- We would like to try single precision in case of PDF
evaluation, moving to double precision for the final
reduction
- Reduce memory footprint (half space for results)
.- Gain a factor possible 2x from vectorization

Alfio Lazzaro (alfio.lazzaro@cern.ch) 33

\ »

‘e
CERN

openlab

Conclusion (2)

* Try the code on LHC analyses
* Dalitz analysis
* Working with RooStats authors

* We are also evaluating Intel MIC platform, which looks very
promising as accelerator system (very easy to use it)
* X806 instruction set accelerator
* 512-bit SIMD units
* More than >50 cores

* There will a workshop at CERN discussing “Future Challenges in
Tracking and Trigger Concepts™: http://indico.cern.ch/event/
tracking2011

Alfio Lazzaro (alfio.lazzaro@cern.ch) 34

